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Abstract

It is shown how to compute the detection probal.ility of certain ,.signals

by numerical integration of the Laplace inversion integral involving the

characteristic function or the moment-generating function of the detection

statistic. The contour of integration is taken as the path of steepest dcsccnt

- of the integrand and is determined numerically as the integration proce(.ls.

. The method is applied to calculating the performance of the optimum det':ctol

of a Gaussian stochastic signal in white noise when the signals actually prc-

* sent have a different average s.n.r. from that assumed in the desjn. Results

are presented for narrowband signals with Lorentz and rectangular spectral don-

sities. The detectability of the former is shown to be more sensitive thqn

that of the latter to the value of the design s.n.r. The relative disadvantage

of the threshold detector, also assessed by this method, is smaller for signals

with a rectangular than for those with a Lorentz spectral density.
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I. Introduction

In calculating the probability of detecting a certain kind of signal by

means of a certain receiver, it sometimes happens that although the character-

istic function of the detection statistic is known in rather simple form, in-

verting it to determine the probability density function of the statistic and

integrating that to find the detection probability may be quite difficult.

One example is the detection of a fading radar signal by a receiver that sn::,s,

or "integrates", the quadratically rectified outizuts of a matched filter follow-

ing transmission of a number of radar pulses. When the fading is described as

in Swerling's Cases III and IV, for instance, the average detection probablity

can be written down in closed form, but it is very complicated, although the

characteristic function from which it is derived is relatively simple [1].

Straightforward computation with that closed form is a lengthy process when the

number of pulses integrated is large, and it may require double precision in

order to avoid overflow or underflow of the numbers involved.

Another example is the detection of a narrowband stochastic signal, as

in radar astronomy and scatter-multipath communications [2]. When the sigual

can be modeled as a segment of a Gaussian stochastic process and is received in

white noise, the characteristic function of the optimum detection statistic can

be expressed as an infinite product involving the eigenvalues of the autoco-

variance function of the signal process, and the probability of detection comes

out as an infinite series when this characteristic function is inverted by means

of the residue theorem [3,4,5]. Computations with this series are feasible only

when the number if significant eigenvalues is small, unless both the eigenvalues

and the terms of the series are carried to double precision.

Problems such as these generally involve a detection statistic that can

at least roughly be repre.,;ented as the sum of a certain number of in eQw
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random variables ; this number can be termed the number of "degrees of freedom"

in the statistic. In radar detection it is the number of pulses integrotcd;

in detecting a stochastic signal it is the product of the bandwidth of the sig-

"* nal and the observation time. The inversion of the characteristic function by

the residue theorem in order to determine the probability density function of

the statistic, and its integration tc obtain the probability of detection, be-

come computationally the more difficult, the larger the number of degrtes of

freedom in the detection statistic.

The probability of detection can also be expressed as a contour intcgral

involving the characteristic function or the momeiit-geceraring function (m.g.f.)

of the detection statistic. Here we shall descr.ibe hoo the detection probabil-

ity can be conveniently calculated by numerical evaluation of thi.- integral

along an appropriate path. The path goes through the same saddlepoint of the

integrand that was featured in an approximate method- for evaluating such inte--

grals, described in [6]. By choosing the contour of integration as that along

which the integrand decreases to zero most rapidly on each side of the saddle-

point, the integral can be expeditiously and accurately evaluated by applying

the trapezoidal. rule [7]. This contour of integration is known as the path of

steepest descent.

An advantage of the method is that it can be applied when the number of

degrees of freedom is arbitrarily large. The principles underlying it are lu-

cidly explained in the book by Carrier et al. [8]. It was used in a fluid-

mechanical problem by Esch [91, and a particular method for locating the path

of steepest descent and numerically integrating along it was described by Rice

[7]. A somewhat different method for determining the path will be presented in

Section III. Because the use of steepest-descent integration to calculate de-

tection probabilities seems not to be widely known among radar engineers and

2



system analysts, it will be reviewed here in ter.s of a particular example,

that of calculating the detectability of Gau;sian stochastic sigunas in white

noise.

The optimum detector of Gaus ;ian stochastic signals requires fo- its de-

sign either knowledge of or an assumption al,out the average signal-to-noise

ratio of the signals to be detected. The perform,ance of this optiumm detector

was extensively analyzed by Van Trees [5] by means of an approxii;,ition to the

error probability akin to the Chernoff bound, but he assumed that the average

s.n.r. of the signals actuolly arriving was equal to that for which the detec-

- tor was designed. The performance of this detector whien the aveirage input

*s.n.r. differs from that assumed in the design seems not to have been studied.

Here we shall show how that can be done by utilizing a new fnctorizaLion of

the m.g.f., which is presented in Section II, and which permits efficient cnl-

culation of the detection probability by the residue series for low values of

the time-bandwidth product. Section III shows how to calculate the detection

probability for arbitrarily large values of that product by steepest-descent

integration. Section IV describes how to calculate the decision level required

for attaining a pre-assigned false-alarm probability. The results are presented

in Section V as graphs of the average input s.n.r. needed in order to attain a

given pair of false-alarm and detection probabilities, as a function of the

average s.n.r. for which the detector has been designed to be optimum. The re-

sults enable us in particular to assess the loss in signal detectability entail-

ed by adopting the threshold detector, which is optimum in the limit of vanish-

,-- ing input s.n.r. and is simpler to construct than the detector that is optimum

for finite input s.n.r. The calculations were carried out for signals with two

2
types of spectral density, the Lorentz, which decreases to zero like I(tIi at

large frequency deviation jwj from the carrier frequency, and the rectangular,

; •



which is confined to a finite spectral band, with Un which it is u~iform. These

two types of spectral density represent OPPOSite extremes, brackotin- Lipectral

densities with a variety of asymptotic. dependence or. IwiL). 'It is found that thc

detectability of signals with the Lor-entz spectral density is much more srisi..-

tive to the choice of the des-ign s.n.r. than is the detectability of signals

with a rectangular spectral dc'insity.
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II. The Detectability of Gaussian Stochastic Signals.

(a) The Optimum Detector

A narrowband Gaussian stochastic signal

s(t) = Re [S(t)ei

of carrier frequency £ is to be detected in the presence of white Gaussian noise

of unilateral spectral density N by observation of the input

v(t) = Re [V(t)c

to a receiver during an interval (0,T). The complex autocovariance function

of the signal is

;-E[S(t )S*(t 2 )I, (1)

E standing for expected value, and

E[S(t 1)S(t2] = 0.

The derivation of the optimum and threshold detectors is well enough known that

a summary to establish notation will suffice [3,4,5].

Define hypothesis 11 as the proposition that the complex envclope of the
Y

input v(t) to the receiver is

I
V(t) y'S(t) +N(t), (2)

where N(t) is the complex envelope of the white noise, with

3.--i E[N(t 1)N (tz) 2 N6(tl- t 2) ,

E[N(t1 )N(t2)] = 0. (3)

The parameter y measures the strength of the incoming signals relative to that

of the signals for which the receiver is designed to be optimum.

The complex envelope V(t) of the input is sampled by means of a set of

d functions fk(t) orthonormal over the observation interval (9,T),

5



V(t) = zkfk(t), Z k j fk(t ) v ( t )dt. (4)
k= 1 0

By taking the fk(t) as the eigenfunctions of the kernel N-] (tlt

k. kf k~t M N f (t, s)f k (s)ds, -k,(5

the complex samp]es zk k+ iyk are statIstically ind.pendcnt, circular-complex

Gaussian rmdom variables whose. real and imilginary parts have variances

E(ZkZk*:!ty) = N(1+y k) (6)

under hypothesis H • the joint p.d.f. of a finite nuncr 11 of tht. can be
Y

written

(Xil "''' IXn' Y11 .''1 Yn P(l "I', zn

= [2N(--yk) - exp 2N (1+ 1 (7)

k=l

The optimum detection statistic U Tis proportLiona. to the logzlrithrmi of the

likelihood ratio -i/' 0 in the limit n ,

U = - Zk2 1~k2

k= N(I + dk

- Iz-N l+kI (8)

2N 1 +7 (8
k=1 k

This statistic is compared with a decision level UO; when UI > U0, the receiver

decides that a signal is present. The value of U0 is set so that the false-

alarm probability Pr (U > U0 110) takes on a pre-assigned value Q0 "

We shall calculate the probability

Qd (y) Pr (U > U011l) (9)

66



that the receiver decides a signal present when the one actually on hand is a

realization of a narrowband Gaussian stochastic prncess with complex autccovar-

iance y (tl,t 2 ). The moment-generating function (m.g.f.) of the statistic U

under hypothesis H is

YY

au

I-I[2TN(l+y) ]lfxP[ dyI__
= +f exp 2N(l+YXk) 2N(l+X)dXkdYk

k=1 o

CO

:7 (l+lJk(y)s]- (10)

k=l

where

Xk(1 +YXko
Itk(Y) = -k (11)

k 1+

Then the detection probability is

c+iO

Qd(y)= -J sh(s) exp (U 0 s) ds/2lj,

c-a -1

- < c < O, (12)

by the inversion theorem for Laplace transforms; the contour of integration

runs parallel to and to the left of the imaginary axis in the complex s-plane,

but to the right of the singularities of the m.g.f. hy(s). By evaluating the

contour integral by the residue theorem, wc find

00

Qd (y) Pk kexp [-U o/Pk( ¥ ) ] ,

k=1

k ( 1 - - (13)

W 7
Ek
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A form often more convenient for computation arises by factoring the tcrin

of h (s) as

"" 1 (1 + S)Ak+ ysxk 2  (1 a Xs.k (+ s

l+P =S (l+4

where

2 2

a= a(s;y) = {l+s+[(1+s) _4ys],;
2 1

= (s~-y) + {+s - [(I+ s) 7 4y s 1; (15)

and the m.g.f. is

h (s) D(1) (16)
Y D(as) D( S)

in terins of the Fredholm determinant

D(s) (1+XkkS (17)I k~k

kz-1

associated with the integral equation (5).

-1At the pole sk -[ k(y)] of h y(S),

y(l+Xk)
a s =a(Sk,Y) = ak = (18)

-. 1+YA

" = (Sk Y) l/Xk" (19)

Thus the poles of h (s) reside in the factor [D(3 )] of (16), and the residue
Y

at s sk equals
2D(1) (i+ 2yX k 4-yX k)D(l)

D(Cxk) D'(-k - ) (d s /ds) S=Sk (l+y(k) 2 Dk D'k(- )'

the prime indicating the derivative dD(s)/ds. Again evaluating (12) by the

'* residue theorem, we find for the detection probability

8



pk ( I + 2-,-+ -f k -k  0

Q(y D) ZE)p() x L- (20)d ~ k= I ( 1+ 'k) ( I [ kIk)A k (~Y)

where the coefficieuts

P(1) k /kD' (-A k' 1 1 H (I ) k (21)

independent of y, can be computed once for all values of the design s.n.r.

(b) The Threshold Detector

The threshold detection statistic U0 js obtained by neglecting, )k in the

denominator of each tern in (8), as though the signal for which the detector
is designed to be optimum weie much wecer than the noise,

U = (2N)--1 k z xkk 12  (22)
k= k-- k

0It is comparcd with a decision level U 0, and a signal. is declared present. when

8U0 > 1O The m.g.f. of the threshold statistic is

r 0 -

,11 hy(s) = EJexp(-sUo)Ili-y]

= 11 [l+pk (y)s]
k=1

I sDc)Dr) , (23)

P k(Y) = Xk(l+YAk), (24)

-' 1 2 2 ' 1 2
(ss 4ys), = - Is-(s 4ys)], (25)

A similar analysis shows thi.it the dCtcctioTn probability attained by the

threshold detector,

*Qd(y) = Pr (U0 > Uo0 1H y), (26)

is given by the residue serles (13) with Ik replaced by 11k or by

9a
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Q

=z (1 + ( CX'

.k = (1- yXk). (27)

Here the parameter " measures the signal strength relative to that of the sig-

nal S(t) involved in (1), although this is no longer thaL for which the detector

is Optimum.

(c) The Fredholnm Determinant

UThe series in (20) and (27) are mo;t convenient when the Fredholm dtermnj-

nant D(s) is known in clos:ed form. As shown by Sig.rt [101, it: can be calcu-

lated from the solution h(t,s;u;T) of the integral equation

h(ts;u;)-L + uNj (t,r)h(r,s;u;T)dr = uN -(t, F;),

,0

0 < (r,s) < ., 0 < T < T, (28)

whereupon T
D(s) =exp h (t,t.;s;t)dt. (29)

When the real and imaginary parts of the complle. envelope S(t) of the

signal can be modeled as the outputs of identical linear systems driven by in-

idependent white-noise generators of equal strength, the signal will be said to

be ]euco;enic. The Fredholm determinant D(s) can then be calculated by a method

given by Baggeroer [11]. This is the cas&e, in part icular, when the signal is a

segment of a stationary random process with a narrowband spectral density (w)

that is a rational function of U); the complex autocovariance function of the

signal. is

(t,s) 4, (,)e) dw/2tr.

10



(The origin of the ti-scale is tlhe carrier frequency .) Tf e J fiar systems,

described by state vectors of finite dimension, are thin statioiaLy, aS are

the white-noise generators. By utilizing a linear system with coF.mplex state

variables, as shown by Van Trees [5, Appendix, pp. 565-598], a broader class

of complex signal envelopes S(t) could be handled, but this has not been necs-

sary in the work reported here. Oace one has the F1redholm determinant, the

eigenvalues X can be calculated by finding its 7eros S
k k

D(sk) = 0, xk = -i/sk' k = 1, 2, ...

When the real and imaginary parts of the signal envelope S(t) are inde-

pendent Gauss-Markov processes, the complex autocovariancC function is

e(t,s) = coe-rift (30)
0

the signal has a Lorentz spectral. density

22() 0 (31)
tW +11

and as shown by Siegert [10] the Frudholm determinant is

2mg- 2 -mg
D(s) (]+g) e m -(i-g)2e

4gem

x 2E
g (+ KS) 2 , m = pT, K = - (32)

mN

where E = 0T is the average energy of the signals s(t). The eigenvalues Ak

are given by

Ak = K sin 2 6k ,  (33)

where 0 k is a root of the transcendental equation

mcot a k = 20k+ (k- l)r,

k = 1, 2, ... , 0 < 0k < rr/2, (34)

* which can quickly be solved by Newton's method. The associated value of g in

1 i-



(32) is

g j cot 0..

For k >> 1 the eigenvalues are approximately

k2"2 -N (35)m + (k-l 1i2 I

In terms of 0k the constants p defined by (21) are

pk~l )  (-1)k-e s in 20 k'1'k"im .22

2 (36)
m+2sin 0k

For a stationary ]eucogenic signal whose inarro-.:band spectral density r(w)

has the form of that for the noise in an RLC circuit in thermal equilibrium,

the Fredholm dt!erminant: has been calculated by Slepian [12].

(d) Computation with the Residue Series

When the eigenvalues Xk drop off rapidly to zero with increasing index k,

it is unnecessary to have the Fredholm determinant D(s) in closed form in orCer

accurately to evaluate rhe residue series (13), (20), and (27), provided one

has computed a sufficient number of those eigenvalues. The behavior of the

eigenvalues illustrated by (35),

Xk N (kI/T), k >> 1,

is at l.east approximately manifested for arbitrary smooth spectral densities

P(w), and the more rapidly the spectral density decreases to zero with increas-

ing angular frequency W, the more expeditious computation with the residue

series becomes.

2
When the narrowband spectral. density 4((o) is a rational function of w

the eigenvalues Xk can be calculated by methods given by Youla [13], tlc writer

[14), Slepian and Kadota [15], andBaggeroer [11]. The method of [11] applies"

12
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also to nonstationary leucogc:nic signals.

In the extreme case of bandlimited signals with a rectangular spectral

density

,(W) = E/W, -ITW < W < 7W,

= 0, jWj > rrW, (37)

of bandwidth W, the eigenfunctions fk(t) are the prolate spheroidal wavefiinc-

tions [16], and the eigenvalues have been tabulated by Slepian and Sonnenblick

[17]. Their eigenvalues, which we denote by , are related to those as dc--

fined here by

F s(3)
n NWT n-l'

and their parameter c is /

c= UWT/2. (39)

Reference [17] tabulates s for 0 < n r 20 and n 25, 30, 35, 40, and for
n

integral values of c up to 20, as well as for c = 25, 30, 35, 40. For c >> 1

there are approximately WT equal eigenvalues X k E/(hN.r:T), and the rest decrease

exponentially to zero with increasing index k.

For the sake. of comparing spectral densities we adopt as our definition

of bandwidth W the expression

W [f( d(/2/, [(w)] 2
dw/2, (40)

which accords with (37). For the Lorentz spectral density in (31.), W =

The effective number

M6 0) Xk2 ~ 2
M= /E X)/(41)

k= k-1

of significant eigenvnlues of (5) is

13
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M = [(o)'r]2  ( - u2d (42)

in terms of the complex autocovariance funiction q(T) 
= (t t+ ) for a sta-

tionary signal, and it is approximaLely cqual to the tlme-baudwjdth product V,.'F

when large.

When the time-bandwidth product is large, computation with the residue

series (13), (20), and (27) becomes infeasible. Its terms alternate in sign,

and as the terms of lowest order are of the same order of magnitudo, they must

be evaluated with high precision if the series is to be accurately summed. The

con,;tants k in (13) and k in (20) and (27) involve differences of the eligen-

values, and because thu eigenvalues of lowst order lie close together, thr:si

must be kno .n to many signifi -ant figures in order to deterraine tli,'se constants

accurately. The situation is least favorable for the rectLangular spectral de(n-

sity, for which the eigeuvalues' are. tablilated to only eight significant figu-es,

and computing them to more significant figures would be laborious. Even for the

. Lorentz spectral density, the residue series has been found to be inaccurate for

WT of the order of 10 or larger. Another metbod of evaluating the detection

probability Qd0') must be sought.

14
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S11. St'e[jcSt Descent Integr,_tioun

When summing the residue serie , is not feasible, we resort instead to eval-

uating the integial in (12) or its counterpart

m-Qd(Y) Q1 (Y) f s
1 1Y-( W) exp (U 0 s)ds/2nJ , (43)

C > 0,

numerically. We have a broad latitude in picking the location and the form: of

the contour of int,'ration, and we try to ch oo,;e tLorm in the most advantageous

manner. Viewed a- . a function of s for real values of s in - < Re s < col

the int egrand

exp T(s) =(4S) h (S) exp (U 0S) (44)

of (12) or (43) has two minima, one at a point s = U O  il - 1  < Re s<0, the

"other at a point s u 0 > 0. (For ± we use -s when the path of integiat-ion

passes through u 0 ' and (12) is evaluated, and we use +s when the path poes

through! uo and (43) is evaluated.) As a function of complex values of s, the

integrand has saddlepoints at u 0 and u 0  [6]. If the path of intugration passes

vertically through u 0 or u 0 ", the magnitude of the integrand, which is mna:-:im M

at the saddlepoint, decreases most: rapidly as the point s u+jv moves up or

down the contour from uO ' or uo"

These saddlepoints are the roots of the equation

"(u =d [Pn h (s)] + U -u 1 =0,
0 ds Y SU 0  0 0

S=0

u0 = U, u0 ", (45)

primes on T denoting differentiation, and this equation can be expeditiously

solved by Newton's method,

15
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0)' (uO)
u.- 0 u 00 j(

d) [Z.n h (s)[ + Uo - 2 > 0 (46)

ds 0

It will be necessary to compute thc-se derivati ves numcrically if the Fredholm

determinant D(s) involved in i y(s) is not kno ii ini closed form or is too com-

plicated. Alternatively on', can use Ne.toii's metlhod to Eolvc the cquation

Im '(u+jv) = 0 (47)

* for u, witl the imaginary part v taken inf-lnitesii)a], but positive, evalunting

the derivative of this function numer ically. The values of u0 and u0 " necd

not be known to high precision.

_ In [6] the integrals in (12) and (43) were evaluated ap ,rxim at ly as

Qd(Y) =iz [2 r'7"(u0 ' ]exp Y (u0') (48)

when U0 > E(U if ), u' < 0, and0Y 0

-[2r' (u 0 ") - exp ' (U 0 ") (49)

when 1 0 < E(U11 T ) , u 0 " > 0. That paper [6] lists previous work on "saddiopoin-

approximations" of this kind.

* The path along which the integrand in (12) and (43) decreases most rapidly

to zero is called the path of steepest descent [8]. Along the path of steepest

descent the integrand remaitir real, or what is the same thing,

Im T(s) = arg 1iT(s) +U 0s-arg(±s) = 0, s = u+jv, (50)

where arg s is the principal value of Im (kn s). Because the integrand de--

creases most rapidly along this path, a numerical integration of (12) or (43)

along it, utilizing, let us say, the trapezoidal rule, requires fewest steps

in order to attain a prescribed accuracy. Solving (50) precisely at each point

along the path at which the integrand is evaluated, however, would much protract
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the computation. Instead we solve (50) only approximately aiid correct for tLhe

discrepancy.

Equal steps Av are taken in the vert.nal. direction, starting at v 0.

For each value v = v = mAy, m = 1, 2, ... , the solutioti of (50) for u u(v )

is undertaken by Newton's method. That is, with a convcnicnt interval 6 u,

and starting with a trial value of u, we deternine a new trial value by

f(+60 f(u) f(u) Im T'(u1-jv). (51)

In our computations the number of iterations at each point was limited to five.

The initial trial value was taken as the line .r extrapolatioli of the two pre-

vious solutions,

u 2u(vl) - u(Vm 2 ).

(A quadratic extrapolatiorn,

u 3u(V ) - 3u(v 2 ) + u(V

would start the iterations of Newton's method closer to the solution of (50)

and reduce the number of iterations required.)

The trapezoidal rule Is used for reasons vxplained by Rice [7]. By virtue

of the sy mmetry cf the intcgrand and the path of integrati o with respect to the

real axis, we approximate the integral by

u0 =u 0  <U0, Qd(y) I iR -0 0d
0 d = -ReeXp [T(S)] (Av - Aku),

U. U0 1 > 0, 1 -QdQ(y) Trm=O

Ss= u(v m) '  v = ma, u) (2

U~

i.-jv V 11 mVIIv r

t Au = LIN )- U(Vm~) M > 0

"I
I
I -

- --, I1 = 0

(52)
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As with the saddlupoint approximat ion in (' S), (49), the integration start2

from u 0 ' < 0 for U0 > E(UH) and from u 0 1 > 0 for U0 < E(U H ) . When th do-

cision level U0 is close to the mean F(UH-) , it does not .at.r at which s,:-dle-

point the integrat:lon begins. The sum-mat:ion is stopped .+en te magni tud,

exp[Re '(S M)] of the integrand falls below a specified fraction of the vullu'

of the suni so far accumulated.

If (50) were solved ev:actly, thv factor exp (s m in (52) vould be cl and

the term jLu in As Av-jAu would not coni!ribute, but since (50) is solvod only

approximately in order to save com.puter tjie, T'(s ) has a small iniaginary piart,

which combincd with jAu induce,; a small, but necc.-sary correction to the, term:s

of (52).

The initial step-size was taken as

Av = 0 1- U0 0 or u (53)

which is of the ordfer of magnitude of the width of the integrand as a function

of v in the vertical direction. The second derivative T1"(Uo) arises in solving

(45) to determine the saddlepoint and is thus known before integratiJon begins.

Figures 1 and 2 show typical paths of steepest descent for calculating the

probabilities Q0 "- Qd ( 0 ) and Qi(l) = -Q d(1) for the optimum detectors of sto-

c chastic signals having Lorentz and rectangular spectra, respectively. The neg-

O ative numbers along the paths indicate lOglo of the ratio of the value of the

integrand at each marked point to that at the saddlepoint. The rapid decrease

in the integrand is evidont.

-. By expanding the exponent T'(s) of the integrand in (12) or (43) in a power

4
series about the saddlepoint and keeping terms through (s-u O) , one finds for

the equation of the path of steepest descent in that region

2 u(6T 0 " + 31'0. " U + 4'0O 
2

V"j + " U U-U o '  (54)

18



the primes indicating derivatives of q'(s), wh:ich are evaluated at u. Thus

in the neighborhood of the saddlepoint the path is approximately a parabhola [18],

2 '" "u Uo- ov , -P /3Y (55)
0 it

Having determined that the path of steepest descent is nearly parabolical,

one can shorten the computation time by integratiuig instead along the curve de-

fined by (55), replacing (52) by

0  u0  < 0, Qd(01

SY, C Re 0."1) [T() ] (I A jov )Av,

u0 = Uo > 0, -Qd(Y) m=O "
-d

"m 0~
v mAv, s = " A 2 = 8:

1, m > 0. (56)

It is urincces:ary to kn,,w the curvatore F to high accuracy, and if it is incon-

venient to differentiate Y(s) anal-yt-eilly at s 110 , one can determine 0 nu-

merically by evaluating the exponcnt T'(s) at two poin-ts on each side of the

saddler -nt:

= H'(U+k6), k = -2, -1, 1, 2,

whereupon fitting a third-degree polyinomial to these points yields the approxi-

mat ion

2( 1 - -+ q'-2

216(42 4 -2- q'1- -i)  (7

One can take the spacing 6 of the order of Av as given by (53).

Trials with both (52) and (56) with the same design s.n.r. S E/N for

0

values of the time-bandwidth product WT equal to 4, 8, 12, 20, and 35, with

4
the decision level U0 selected to yield a false-alarm probability of 10 and

with the spacing Av selected as in (53), yielded Identical results to eight

significant figures. With the integration stoppord when th" inagnitude expiRe T(s))

fell to 10- 1 0 times the value of the accumulated sum, eleven steps were required.
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Halving the step-size cikingud the resul t only in the eighth sig,,nl iicant- f igtvc,

and 3 o-i neb ~oeta ~ ii in th.at place; txuc'nty or twe,,nty-one tep

were required. The curvature (a decrvasocd slightly as WT1 increased from 4 Lo 35.

Integration for Q(0) and Q 1 along the path iii Fig. 2 for the ruct amiu--

lar spertral density and along the approximrating pa----abola (55) yielded resus

stable t~o seven siguificant fig-ures with eight stups.
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'IV. Settingv the Duci'ion Level

The decision level U0 is to be set at such a value that a pre-assigned

false-alarm probability

SQ (0 )  P (U )dU (58)

U0

is attained; p0 (U) is the probability density function of the statistic U under

hypothesis IT that no signal is present. Starting from a trial value of U0 , a

new trial value can be computed by Newton's method,

S'd (0) 0
" U0  p0  (U (59)

and the prockdure repeatcd until the value of U0 ceases changing signifficantly.

000
," %'.'-]"The residue series for the terms in (55) is fr on (20)

P~ k (I + _ Lk)
Qd(0) D(l) (l 1 ex p k (60)

and by differentiation

P 0 (U 0 ) = D(l) -- k - [ ]p )U (61.)

1 k A kk~

When the time-bandwidth product WT is so large that computation with the

residue series is infeasible, the probability Qd(0) can be calculated by inte-

grating (12) with y = 0 along the path of steepest descent or along a parabola

as in (56). The density function po(U) is given by a similar contour iutegral

..1 P0 (U) f h0 (s)eUSds/211j. (62)

Although it is not the best contour for evaluating (62), the steepest-descent

path used for evaluating (12), as explained in Section III, or the parabola
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in (55), can 1,c uscd t u int hrzt (i 2) cnu:cri e1l , .. I : ye] I ; tilt co:oII"w r ac,'1 -.-

late', both sulm siIul.taneo- ;l,. The valt~c of p0 ( 0) I ( 5) I not needed to

great aecniacy in order for NIwton's iethocd to !'.2, applicd.

' Computer tJire can be scved by dctcriinihlg t..- in-Itial t;ij] vetie of U0

by the more rapidly calculated saddlepoint appro.:i;iaton in (48), whIc, for

Pthis purpose takes the form

'-QO 1 r ;T O u 0 -- u - 6Oq (I 
!
-- JI-)- O2xI (LIo ) (63)

with

exp..... _ exv (11oS) (64)," xp[ 0() si)(s+ 1) 0

Solved for UO, (63) yields

0= Uo t l 2 rllJo"(U') ,1ju 0 ' I D(uC' + I )Qo/D(l)}. (65)

One puts a crude trial value of the decision level U0 into (,.5), d- .'es t-

saddlepoint < 0, calculat:s a new trial value of U from (65), and iterates

0

this procedure until it converges; it has been found to do so rapidly. The re-

sul.t is the initial trial value of U0 for (59)'.

k"

h.

r"
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V. 'e rfo', ;Cucc of the Opt imun and Th:erlold D tec tor:;

Equipped now with accurate irni5 of calculating the dcetection prolability

Sd(y) for a YM-ilge of va l].s of the time-bandwi d t product WT, we can cor-lpare

r. •• -the perfe; carce of detctors desigiied to be optJmum for various valu,, of the

design s.n.r. S o 
= E/N, including the threshold det cct or, for which that design

s.n.r. equals zero. We set the false--clarm prebabi]ity Q0 = Qd ( 0 ) equal to 10

and i"cteriiu ncd the dec:i eio, le\el.s U 0 as described in Se, ction IV. The input

S = yS 0 required to attain detcection pc.1baiities Qd 0) = Q-d = 0.9,

0.99, 0.999, and 0.99)9 were then cot.puted by Newto's ni.thod. That is, with

a suitable incLenment ?y, a new trial value of the ratio y was detei..Ined h-

N* ~Qd ( Y ) - Qd_ 6, Y Y Q - Y d(+T 6-Qd(Y)
d d

in which the values of Qd(y) and Qd(y+6y) were deterined by eithcr tic. residue

ssries, as in Section I, or the contour integral, as in Section III, depending

on whether the time-bandwidth product WT was small or large.

The resulting input s;.n.r. S = yS 0 are plottccd in db. in Fir;;. 3 - 7 versus

the s.n.r. S 0 for which the receiver is designed to be optimumi. Fl gurei' 3 and

4 display the results for signals with Lorentz and rectangular spectr-al. denstie.cs,

respectively, and with the same time-bandwidth product VT = 8/= = 2.5465. Fig-

ures 5 and 6 do the same for WT = 14/i = 4.4563. (These values of 1T correspond

to values of Slepian's parameter c equal. to 4 and 7, respectively.) Figure 7

displays the input s.n.r. for signals with a Lorentz spectral density and WT = 35.

Each of the curves in these figures exhibits a minimum at that value of the

design s.n.r. S0 for which Qd() equals the fixed detection probability Qd for

the curve. For larger d.sign s.n.r. the curves r1ise extremely slowly; in this

range the performance is quite insenEitive to the s.n.r. for which the detector0

is designed to be optinum. For smaller design s.n.r., on the other hand, thc

23
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curves, rise ri d to tiie-i 1 v.a ,i t i- 0, wli ii -1 It l t I lt, rix1i

detector. The di f fecren c oLcnta ekv ce anLw-L' t1tn e 0wte ~e

relaitivE eroac c iivn of thle ttires)'Olid de'ector.

This relativke disadvanta-e Is muclk Soallor for sigenals with a reuctZ1nillar

spect ral denisityv thaii for signal; w-i iaLrntspcrld stfocul

val ues of Cie time-bandwi dtli produtct WT. The reaison is easi 1 v seen . 1 c- au s c

for the rectan,',j-r Fl---i l den-i ty the iutc.-rzO equzation (5) has ape~m'Ul

WT eqinl eigenvolues k zind! tlhe rest arc e1 le the ojtLliiu detect or is

very like a detectLor that e[;;j)loys the dcision sf atistic

k1 12

for 'Lll. values cf the des'ig i) s *n *r.*, whecre [WT] Is' thie iritegn;AT part of h

- That tlV s is a good ipprox-iveatI.Ion is; c.vi cent fris ( --Testtstic W' Las

appre *:rtncely Z. F'C.1ld chl sq IU mcd dis tribut ion v- Lh 2 [UT] dcgrees of frc-,domt

The Iperlormanci of the optiiittri dete~ctor for signals xith a rectangular seta

density, thev efcr.e, does not -vary smech ovcr the entire ranga of voli.. the

desgns n. . orsignial.- ith a Lore-ntz spectre I dcnsity, on the oth-r- 11 nO,

the relative weJi)hting of thec teriis in (P) is far from tnifer-i and depends

Kmore strongly on the design s.n.r. As Fig. 7 shows, even at IVT -35 th- dif-

Kference between the thre-shold. detector iind the defector optimum at each of the

prescribed values Qd of Q()is of the order of 0.65 (1h. Although the tllres-

hold detector is close to the optimum wheni the s.n.r. per degree of freedem,

E/(NJ'J), is small, the weak-signal approximation by which it is derived becomes

valid for signals with a sharply cut-off spectral density at lower vleof

the tine-haniwilth product WT than for signals whos e spectral density declines,

only slowly to zero withi increas.tg frequency devliat ion 1(,I.
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It Was the efficiciicy of nuimcreZ Icaly illt egra-ZIt 11y thlIL' LZj)1;10 i 1) 1- 1011

integral inl (12) .n (43) alongf the path of stecle;t rn riL SU I

parabola thn- t nali I (-C covyutnt in2 a lZ rca;onilh !c t iino t he great nummbe r of va 1 .s-

of the detection pru')Lbi1 ity Q d ()) nec-Oed for mapping, time perfoj-iuuncv ci ti.>C'

detectors to thP eXtLn-t es cribed here. 'The rietliod is wo'rthy of trial wlicn wcr

cumulative probabili ties are to bb evalLnated f r ra~nmvariables whiose moment-

generitting or characteristic functions a-re kno%.n in analytic or co::jputablte form.

I am indeubted to Dr. St Fphr -m 0. Rice for instructive anid stiii:ulntiung

liLscussions. of thesc pr~ob1Cls and tcnq.s
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Figure Captions

Fig. 1. Paths of steepest descent in contour inLcgration of (12) for

(1): L, : spect ral densjity, W' 8, S0  100, U0  34.84)1?],

i? Q0 1°-4

Fig. 2. Paths of steepest de.cent iln cot:our iit egrat ion of (12) for Qd(0)

Qd(1): rectangular spectial denity, WT 14/7. = 4.4563, So - 100,

-4
U0  18.195885, Q0  10

= -4

Fig. 3. Input s.n.r. to yicld detection probabil ty Qd for Q0 10 , vtrsus

design s.n.r. S0 : Lorentz spectral density, 1.TT 8/11 2.5465. C',rvcf; are

iiidt-,ed with the value of Q

Fig. 4. Input s.n.r. to yicld detection probability Qd for Q = 10- 4 , versus

design s.n.r. SO: rectangular spectial den -ity, WT 8/1 2.5465. Curves

arc indexed withl the vqlue of Qd"

Fig. 5. Input s.n.r. to yield detectio probability Qd for Q 1 1 versus

design s.n.r. SO: Lorentz spectral density, WT = 14/7 = 4.4563. Curvs

are indexed with the value of Q

Fig. 6. Input s.n.r. to yield detection probabi] ity Qd for Q 10 -  vC11u'

, design s.n.r. SO: rectangular spectral density, W1 14/f = 4.4563. Curves

are indexed with the value of Q

Fig. 7. Input s.n.r. to yield detection probability Qd for Q0  
I 0- 4 , versus

' design s.n.r. SO: Lorentz spectral density, UT = 35. Curvcs are indexed

with the value of Q
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